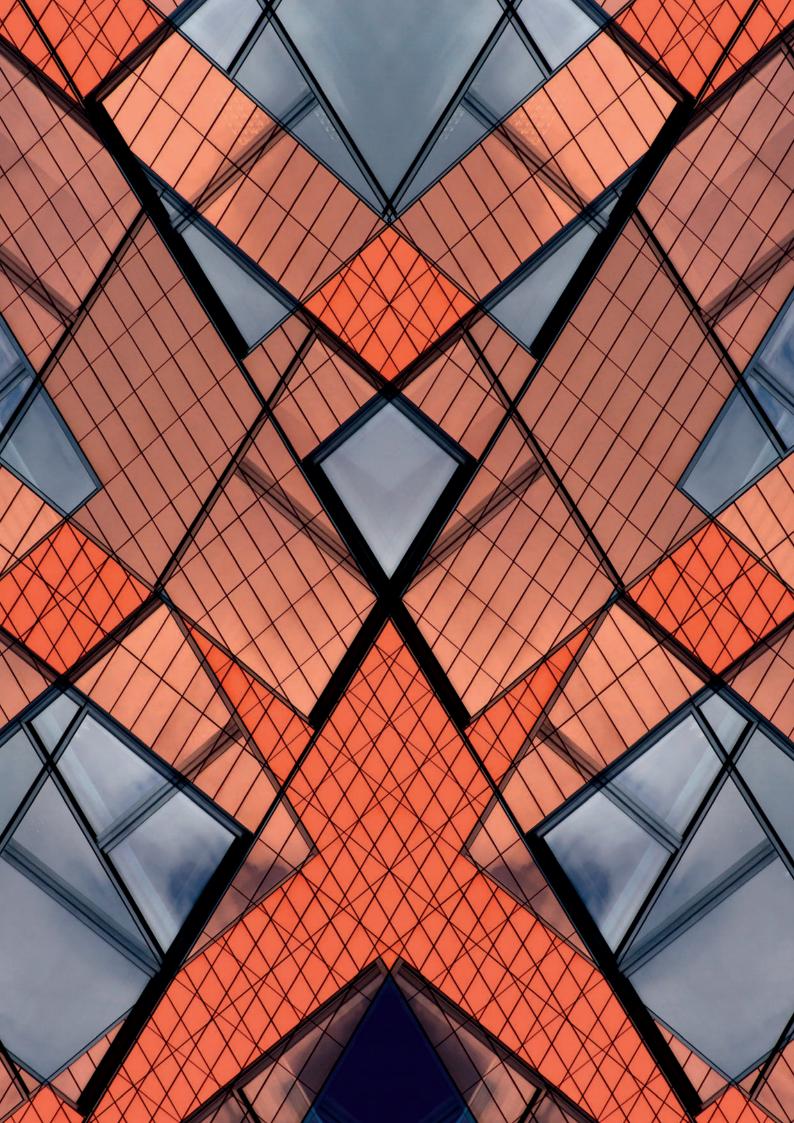


Changes for the Better

e-series Modular chiller

The e-series chiller allows for up to six individual units to be connected together. Available as a cooling only or heat pump version, the e-series is suitable for both comfort and process cooling applications.

A NEW GENERATION OF CHILLER TECHNOLOGY


Mitsubishi Electric is the first name for comfort and efficiency.

Founded in 1921, Mitsubishi Electric is now a global, market leading environmental technologies manufacturer. In the worldwide market, the Living Environment Systems Division provides pioneering solutions that heat, cool, ventilate and control our buildings in some of the most energy efficient ways possible.

Through our technical expertise, long experience and innovative product range, we enable building operators everywhere to significantly improve energy efficiency, reduce running costs and adhere to increasingly tough legislation. We believe that global climate challenges need local solutions.

There are number of challenges facing building owners and managers today, they must tackle ongoing requirements to reduce energy used in their buildings and their running costs, and our aim is to help them in achieving these goals.

At Mitsubishi Electric, we have evolved and today we offer advanced technology that really can make a world of difference.

WHY CHILLERS?

Today's building owners and managers face the challenge of providing a comfortable, productive space that is also energy efficient.

As the drive to reduce energy waste continues with further legislation, building services are being scrutinised to find more ways to optimise performance.

Air conditioning is acknowledged as a significant energy user in buildings, therefore chillers can make a significant impact on the energy performance and running cost for many buildings. As manufacturers, we are being tasked with producing more efficient equipment and with enabling specifiers to compare products easily with regard to efficiency and performance.

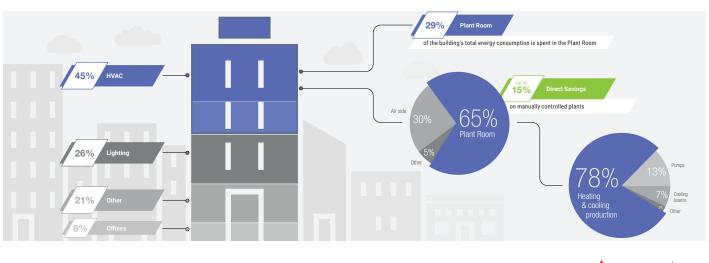
In Commercial buildings HVAC accounts for 45% of total energy consumption

In commercial buildings, HVAC is by far the most energy intensive system, accounting for close to half of the total energy consumption. For this reason every efficiency improvement in HVAC performance can significantly reduce the energy profile of the building, turning HVAC optimisation into a value generating opportunity.

ErP Directive - Lot 21

The main impact of the ErP (Energy Related Products) Lot 21 will be on the way that chiller efficiency is measured. Ratings will be based on higher requirements for seasonal efficiency, and many older existing chillers will not comply.

The ErP uses different performance parameters for different types of product to set the Minimum Energy Performance Standards (MEPS).


Source	Cooling	Minimum Efficency		
	Capacity	Jan 2018	Jan 2021	
Air Cooled	<400kW	149%	161%	
Air Cooled	≥400kW	161%	179%	
Water Cooled	<400kW	196%	200%	
Water Cooled	≥400kW ≤1500kW	227%	252%	
Water Cooled	≥1500kW	245%	272%	

The latest chiller technologies help to address the ERP Directive by ensuring that they operate to meet the precise cooling demand of the building, conserving energy usage within the building. The main components of water and air cooled chillers are very similar.

The way we use buildings today is changing, and the energy demands are changing with them. So now is a good time to consider the benefits of upgrading chiller plant.

With legislation pushing buildings towards greater energy efficiency and reducing carbon, and new regulations bringing even more efficient chiller options, such as heat recovery, to the market, specifiers have every reason to take a look at the benefits of a modern chiller for both new construction and retrofit scenarios.

The impact of a chiller on the comfort of occupants should also be considered. With a modern, robust technology in place, building owners can be assured that they are providing a comfortable and healthy environment, as well as saving themselves energy costs in the long-term.

MITSUBISH

C-series Modular Chillers

Mitsubishi Electric's modular chiller line-up contributes to realizing high functionality, reliability and energy saving with its own control.

Three capacity modules with the side flow type of 30 HP, the top flow type of 50, 60 HP

S BEST IN CLASS EFFICIENCY FOR ENERGY SAVING PERFORMANCE BY THE USE OF INVERTER COMPRESSORS

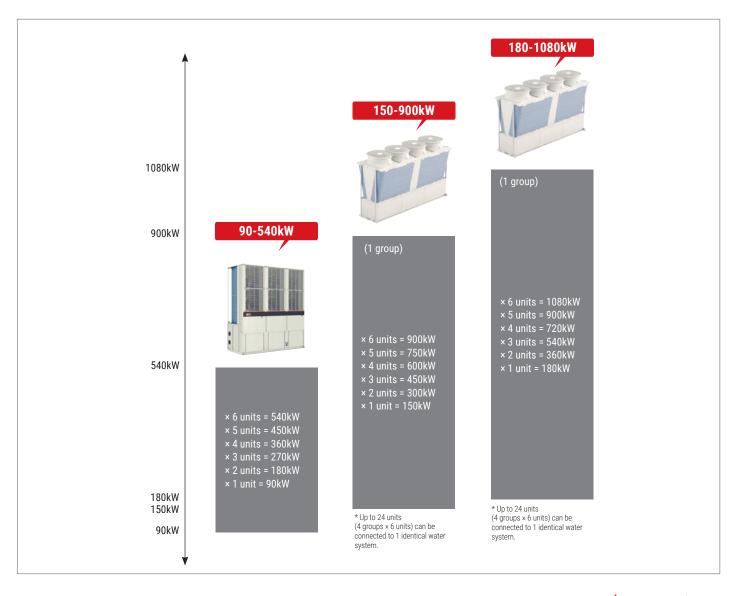
- Inverter compressor is automatically controlled according the load.
- · Optimal control of fans by using inverters contributes to save energy.

HIGH FUNCTIONALITY OF MODULAR CHILLER

- Up to 6 modules can be connected.
- · The combination control of modules helps to continue operation even when one module has stopped due to maintenance.

SAVING SPACE AND INSTALLATION WORK

- · Small footprint installation helps to save space.
- Built-in header type is optional, external piping space can be reduced.


EASY SYSTEM CONTROL $(\checkmark$

- · Water temperature can be controlled remotely by using local remote controllers.
- By installing an AE-200E/A, it is possible to centrally control e-series and CITY MULTI at the same time.

Module line-up				
	90kW module*1	150kW module	180kW module	
Heat Pump	EAHV-P900YAL(-N)(-BS)	EAHV-P1500YBL(-N)(-BS)		
neat Pump	EAHV-P900YAF(-N)(-BS)	EARIV-F130010L(14)(-03)	EAHV-P1800YBL(-N)(-BS)	
Usating Only	EAHV-P900YAL-H(-N)(-BS)			
Heating Only	EAHV-P900YAF-H(-N)(-BS)	EAHV-P1500YBL-H(-N)(-BS)	EAHV-P1800YBL-H(-N)(-BS)	
O sellere O she	EACV-P900YAL(-N)(-BS)			
Cooling Only	EACV-P900YAF(-N)(-BS)	EACV-P1500YBL(-N)(-BS)	EACV-P1800YBL(-N)(-BS)	

(-N) indicates model with built-in header.
 *1 The amount of pre-charged refrigerant differs among models. YAF indicates full refrigerant charging model.

P900

MODULAR CHILLER

High energy saving performance by the use of inverter compressors.

Each module is provided with two high-efficiency inverter scroll compressors developed by Mitsubishi Electric and can operate optimally according to the load. This improves the high energy saving performance.

BEST IN CLASS EFFICIENCY FOR ENERGY SAVING PERFORMANCE

High EER, High COP

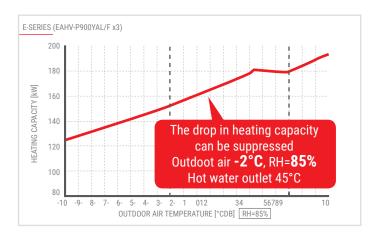
- The air suction area is expanded to maximize the performance of the air heat exchanger.
- Two independent refrigerant circuits are provided in the module to cool and heat water in two stages in series to improve EER and COP.

EER 3.30

COP 3.50

* EER shows the value at an outdoor air temperature of 35°C and cool waterinlet/outlet temperatures of 12°C/7°C, respectively. COP shows the value at an outdoor air temperature of 7°C and hot water inlet/outlet temperatures of 40°C/45°C, respectively. Pump input is not included.

High SEER


Achieved the same SEER from 30 to 180 HP.

SEER 4.48

 \star SEER shows the value at an outdoor air temperature of 35°C and cool water inlet/outlet temperatures of 12°C/7°C, respectively. Pump input is included based on EN14511.

Suppression of heating capacity drop at low outside temperatures

A heat pump technology captures heat from the outdoor air. The heating performance decrease which occurs with a decrease in outdoor air temperature has been made up for by installing a larger number of units. This disadvantage has been eliminated with the e-series by increasing the heating performance in the low outdoor air temperature range. This allows the user to reduce the required number of units.

P-900 KEY TECHNOLOGIES

ENERGY-SAVING TECHNOLOGY

High Efficiency Inverter Compressor

DC inverter scroll compressor is incorporated. Two compressors each are incorporated to increase efficiency.

Two refrigerating cycles

A configuration of two independent refrigerant circuits and the series connection of water-side heat exchangers increase the performance (two-stage cooling).

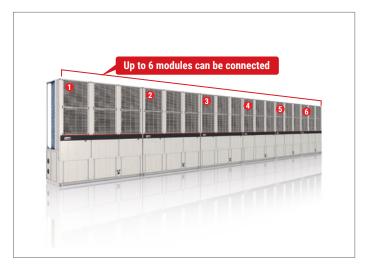
U-shaped High Performance Compact Air Heat Exchanger

U-shaped air heat exchangers are used. Installing them in a row makes the system thinner.

Weather resistant coating is provided for the heat transfer plate fin as standard.

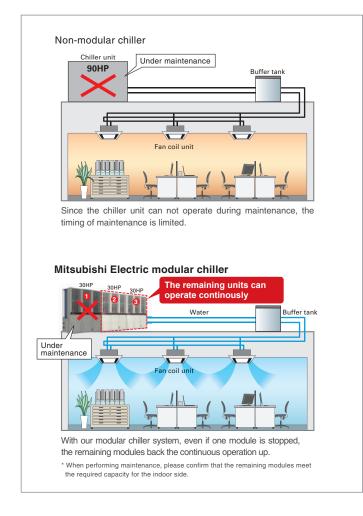
Inflexed Fan

Adoption of a fan with improved ventilation characteristics and a newly designed trailing edge that suppresses wind turbulence raises fan operation efficiency.



Fan Inverter Control

Air blower fans are also equipped with an inverter to save energy.


UP TO 6 MODULES CAN BE CONNECTED

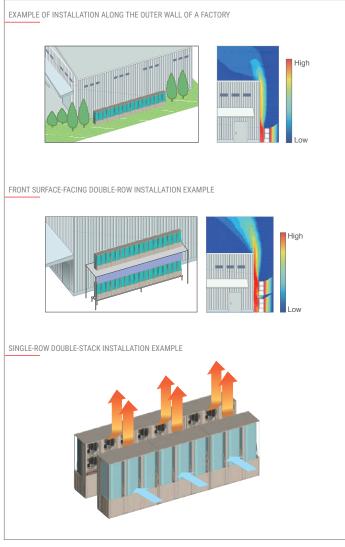
The total capacity can be increased to up to 30HP × 6 modules = 180HP. Because modules can be installed horizontally in a row. Installation in narrow places such as along building walls is possible.

COMBINATION CONTROL FUNCTION

The flexible backup operation among the combined modules enables the continuous operation, even when one module is stopped due to maintenance.

SMALL FOOTPRINT INSTALLATION

Since this module has a compact and thin body, it is suitable for installation along the exterior walls of buildings or in narrow spaces, and it is possible to install the modules on each floor.



Installation example

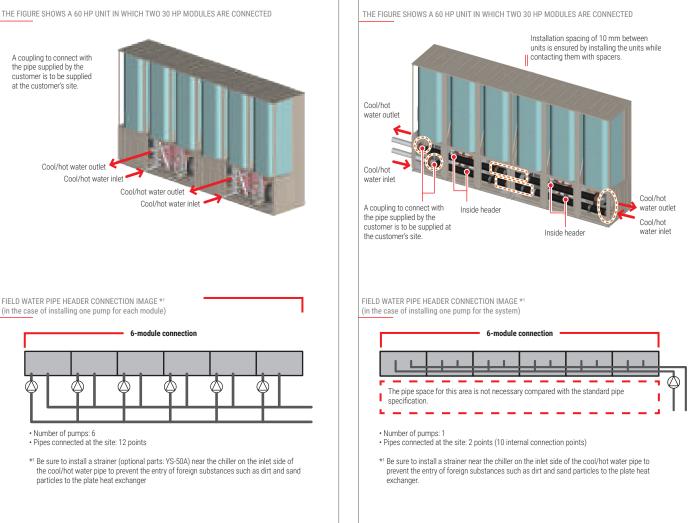
Installable in limited space, such as along the outer wall or in the corner of a factory, or in a narrow space of a building. The compact and thin design allows for the consideration of installation on each floor of a building, as is the case with industrial air conditioners. (If the inside header specification is selected)

The figure shows the air blowing surface directed toward the wall (a diagonal blowing air guide is equipped as standard). Directing the air blowing surface toward the wall is effective in preventing short cycling.

The modules can be installed in two rows or in one row on each of two stages using a frame. They can be installed flexibly according to the installation space.

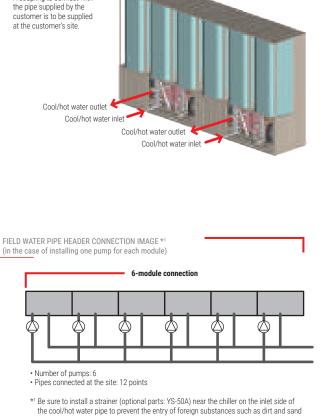
P900 PIPING TECHNOLOGY

INSIDE HEADER


Mitsubishi Electric's Unique Inside Header Incorporates Field Water Pipe Header into Module

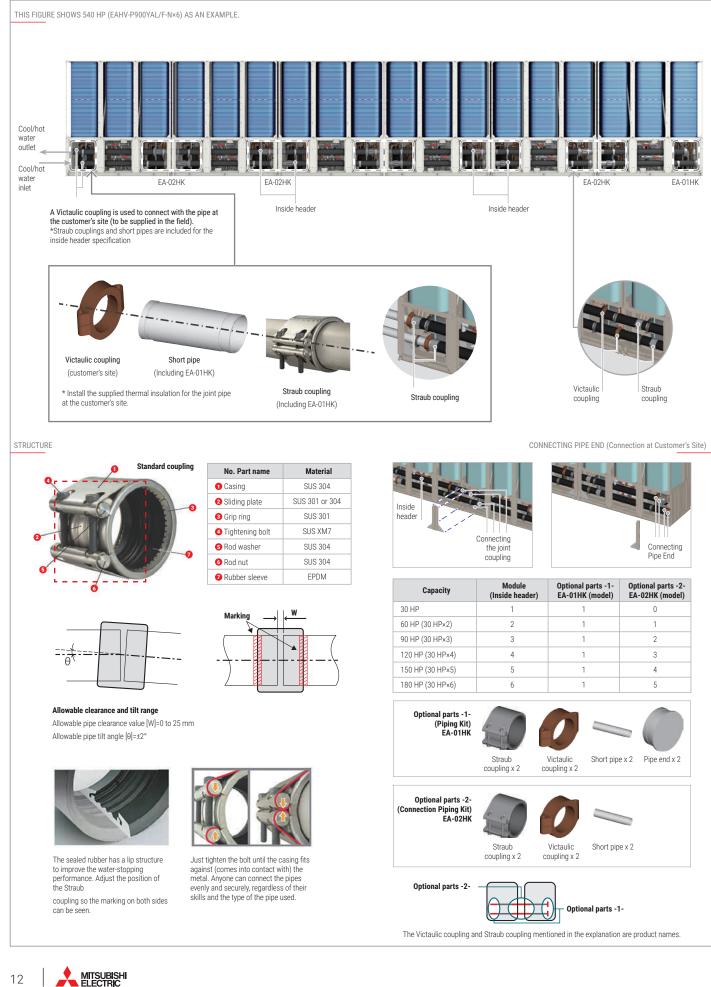
> The field water pipe header section that is usually required to connect the module to the field water pipe is now available as a manufacturer option (hereinafter referred to as the "inside header") which can be incorporated into the module at the factory before shipment (a supplied connection kit is used for the connection work at the customer's site).

> This allows for incorporating the field water pipe header section into the module.


> In addition, the field connection work of the inside header is very simple. Significant simplification of the water pipe connection compared to the previous one has reduced the installation time.

Inside Header Specification (Left or right connection can be selected for the water pipes)

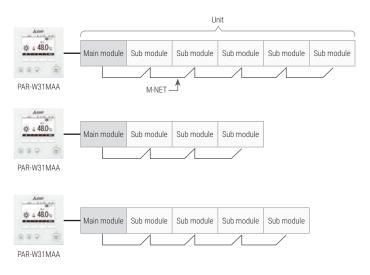
Standard Pipe Specification


A coupling to connect with

particles to the plate heat exchanger

MITSUBISHI 11

About Pipe Connection Kit



CONTROL TECHNOLOGY

- > Up to 6 modules and one unit can be connected for each remote control.
- Simultaneous control

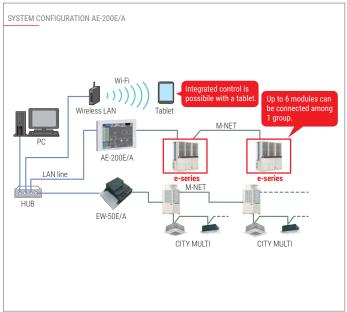
Unit Remote Control				
	FAR-W31MAA			
Control	Simultaneous control			
Number of modules that can be connected	6			
Number of units that can be connected	1			
Number of supported water lines	1			
ON/OFF	•			
Cooling/heating switch	•			
FAN operation switch for snowfall	•			
Target outlet temperature setting	•			
Scheduled operation	•			
Individual error display	•			
Outlet water temperature setting of 5°C or below (Brine)	•			

SYSTEM CONFIGURATION

DEMAND CONTROL

Forced capacity control up to the demand upper limit by an external input to the unit (non-voltage normal open). Heating demand is possible in addition to the cooling demand.

CENTRALIZED CONTROLLER*


When connected to the AE-200E/A centralized controller or the EW-50A/E expansion controller, up to 6 e-series modules can be connected to 1 group for centralized monitoring and management.

Combined management of CITY MULTI is also possible. * Centralized monitoring and management are possible only for M-NET-connected e-series units.

MONITORING ON LCD TOUCH PANEL AND WEB BROWSER

Monitoring of the operating condition—including the water temperature—of e-series units are possible from the LCD screen of the AE-200E/A or from a Web browser. Combined management of CITY MULTI is also possible.

Technical specifications COOLING ONLY MODEL

MODEL			G ONLY MODE		YAL(-N)(-BS) YAF(-N)(-BS)	
Power source					80-400-415V 50/60Hz	
Capacity change mode				Capacity priority	COP priority	
			kW	90.00	63.00	
			kcal/h	77,400	54,180	
			BTU/h	307,080	214,956	
	Power input *2		kW	27.27	16.27	
	· ·	1				
	Current input 380-400-415		A	46.0 - 43.7 - 42.2	27.5 - 26.1 - 25.2	
Cooling capacity *1	Pump input is not	EER		3.30	3.87	
Water	included	ESEER		5.66	-	
	Certified value by	EER *3		3.08	3.76	
	EUROVENT	ESEER *3 *4		4.71	-	
	ESEER (Includes pump inpu			5.46	•	
	SEER (Includes pump input	based on EN14511)		4.88	•	
	IPLV *6		kW/kW	6.34	· ·	
	Water flow rate		m³/h	15.5	10.8	
			kW	56.73	39.34	
			kcal/h	48,788	33,832	
			BTU/h	193,563	134,228	
Cooling capacity *7 *8	Power input *2		kW	25.98	15.78	
Brine(ethylene glycol 35wt%)	Current input 380-400-415	/	A	43.9 - 41.7 - 40.2	26.7 - 25.4 - 24.4	
,	EER(Pump input is not inclu			2.18	2.49	
	EER(Includes pump input b		3	2.10	2.42	
	Brine flow rate	,	m³/h	11.5	8.0	
Maximum current input			A		61	
	Water *9		kPa	135	65	
Water pressure drop	Brine(ethylene glycol 35wt9	() *8 *10	kPa	106	50	
	Cooling	0)	°C		ater 5~25 *11	
	Water °F				ater 41~77 *11	
	Cooling °C					
Temp range	Brine(ethylene glycol 35wt%) °F			Outlet brine -10~25 *8 * ¹² Outlet brine 14~77 *8 * ¹²		
	Outdoor		°C		43 *11 *12	
			°F		9.4 *11 *12	
Circulating water volume range			m³/h	7.	7~25.8	
Sound pressure level (measured in anechoic room) at 1m *1			dB (A)	65	63	
Sound power level (measured in anechoic room) *1			dB (A)	77	75	
Diameter of water pipe	Inlet		mm (in)	50A (2B) h	ousing type joint	
(Standard piping)	Outlet		mm (in)	50A (2B) housing type joint		
Diameter of water pipe	Inlet		mm (in)	100A (4B) housing type joint		
(Inside header piping)	Outlet		mm (in)	100A (4B) housing type joint		
External finish					er coating steel plate	
External dimension HxWxD			mm		< 2250 x 900	
	Standard piping		kg (lbs)		7 (2110)	
Net weight	Inside header piping		kg (lbs)		2 (2187)	
	R410A		MPa		4.15	
Design pressure	Water		MPa		1.0	
	Water side		ivii u	Stainlass stool n	ate and copper brazing	
Heat exchanger	Air side				and copper tube	
	Туре				nermetic compressor	
	Maker				CTRIC CORPORATION	
Compressor	Starting method			I	2	
Compressor	Quantity Motor output		LIM	×		
	Motor output		kW	11.7 x 2 0.045 x 2		
	Case heater		kW			
	Lubricant				MEL32	
	A: 0		m³/min		77 x 6	
	Air flow rate		L/s	1283 x 6		
Fan			cfm		719 x 6	
	Type, Quantity				eller fan x 6	
	Starting method				nverter	
	Motor output		kW		.19 x 6	
	High pressure protection				res.Switch at 4.15MPa (601psi)	
Protection	Inverter circuit			· · · · ·	n, Over current protection	
	Compressor			Over-he	at protection	

OAHHY

^{*1} Under normal cooling conditions at outdoor temp 35°CDB/24°CWB (95°FDB/75.2°FWB) outlet water temp 7°C (44.6°F) inlet water temp 12°C (53.6°F).
 ^{*2} Pump input is not included.
 ^{*3} Pump is not included in e-series.

Promption included in events.
 EN14511 standard (2013) formula is applied to figure out this value in case of fixed flow rate operation (flow rate is fixed at any heat load)
 Pump input is included in cooling capacity for EER calculation. Condition of water inlet and outlet is fixed at inlet 12°C and outlet 7°C.
 EN14511 standard (2013) formula is applied to figure out this value in case of variable flow rate operation (flow rate varies per heat load).
 Pump input is included in cooling capacity for EER calculation. Condition of water temperature : inlet water temperature varies due to fixed water flow rate and outlet is fixed at outlet 7°C.
 Calculations according to standard performances (in accordance with AHRI 550-590).
 Under normal cooling conditions at outdoor temp 35°CDB/24°CWB (95°FDB/75.2°FWB) outlet brine temp -5°C (23.0°F) inlet brine temp 0°C (32.0°F).

** Under normal cooling conditions at outdoor temp 35*CUB/24*CWB (95*FUB/75.2*FWB) outlet
 ** Set the dispwitch SW3-6 on both main and sub modules to ON.
 ** Under normal cooling conditions capacity 90kW, water flow rate 15.5m3/h
 *** Under normal cooling conditions capacity 96.73kW, brine flow rate 11.5m3/h
 **Please don't use the steel material for the water piping.
 *Please always make water circulate, or pull the circulation water out completely when not in use.
 *Please don to use groundwater or well water in direct.
 *The water circuit must be closed circuit.

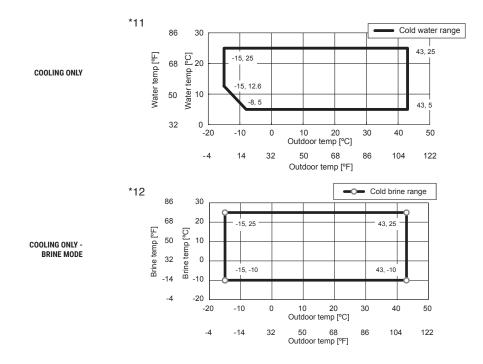
*The water circuit must be closed circuit.

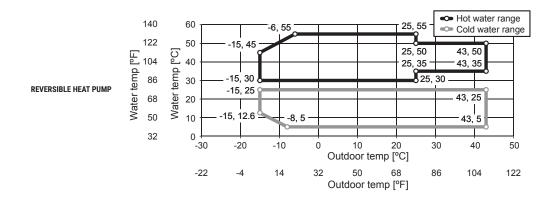
*Due to continuous improvement, the above specifications may be subject to change without notice.

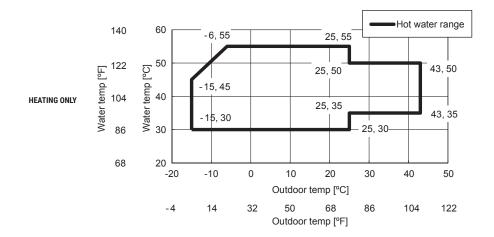
Technical specifications HEATPUMP MODEL

MODEL			SET	EAHV-P900YA EAHV-P900YA	L(-N)(-BS) F(-N)(-BS)
Power source				3-phase 4-wire 380-4	00-415V 50/60Hz
Capacity change mode				Capacity priority	COP priority
			kW	90.00	63.00
			kcal/h	77,400	54,180
			BTU/h	307,080	214,956
	Power input *3 kW		kW	27.27	16.27
	Current input 380-400-415	5V	A	46.0 - 43.7 - 42.2	27.5 - 26.1 - 25.2
	Pump input is not	EER		3.30	3.87
Cooling capacity *1	included	ESEER		5.66	-
		ESELIX EER *4		2.94	3.76
	Certified value by EUROVENT				
		ESEER *4 *6		4.71	-
	ESEER (Includes pump inp	/		5.46	· .
	SEER (Includes pump inpu	ut based on EN14511) *		4.88	· ·
	IPLV *8		kW/kW	6.34	-
	Water flow rate		m³/h	15.5	10.8
			kW	90.00	63.00
			kcal/h	77,400	54,180
			BTU/h	307,080	214,956
	Power input *3		kW	25.71	16.96
	Current input 380-400-415	5V	A	43.4 - 41.2 - 39.7	28.6 - 27.2 - 26.2
Heating consoit: *2			A	3.50	3.71
Heating capacity *2	COP (Pump input is not in		I		
	COP (Includes pump input			3.25	3.61
			nput based on EN14511) *4	3.66/2.89	· .
			r medium-temperature application	A+	-
	Seasonal space heating energy efficiency class for		r low-temperature application	A+	-
	Water flow rate		m³/h	15.5	10.8
Maximum current input			A	61	
Water pressure drop *5			kPa	135	65
			°C	Outlet water	
	Cooling Heating Outdoor		°F	Outlet water 41~77 *9	
			°C		
Temp range				Outlet water 30~55 *9 Outlet water 86~131 *9	
, ,			°F		
			°C	-15~43	
			°F	5~109.	4 *9
Circulating water volume range			m³/h	7.7~25.8	
Sound pressure level (measured in anechoic room) at 1m *1			dB (A)	65	63
Sound power level (measured in anechoic room) *1			dB (A)	77	75
Diameter of water pipe	Inlet		mm (in)	50A (2B) housir	ng type joint
(Standard piping)	Outlet		mm (in)	50A (2B) housir	
Diameter of water pipe	Inlet		mm (in)	100A (4B) housi	•
(Inside header piping)	Outlet		mm (in)	100A (4B) housing type joint	
External finish	Outlet			Polyester powder co	
					• .
External dimension HxWxD	Otan davd niz in m		mm Ira (lha)	2450 x 225	
Net weight	Standard piping		kg (lbs)	987 (21	
	Inside header piping		kg (lbs)	1022 (2	· · · · · · · · · · · · · · · · · · ·
Design pressure	R410A		MPa	4.15	
	Water		MPa	1.0	
Heat exchanger	Water side			Stainless steel plate a	and copper brazing
neat exchanger	Air side			Plate fin and c	opper tube
	Туре			Inverter scroll herm	etic compressor
	Maker			MITSUBISHI ELECTR	
	Starting method			Invert	
Compressor	Quantity			2	
p.0000.	Motor output		kW	2 11.7 x 2	
	Case heater		kW	0.045	
			NYY		
	Lubricant			MEL3	
			m³/min	77 x	
	Air flow rate		L/s	1283 :	
Fan			cfm	2719 2	
i un	Type, Quantity			Propeller	fan x 6
	Starting method			Invert	ter
	Motor output		kW	0.19 x	
	High pressure protection			High pres.Sensor & High pres.	
Protection	Inverter circuit			Over-heat protection, Ov	
rotection				Over-heat protection, ov Over-heat pr	
	Compressor			over-neat pr	IULEGLIUII

^{*1} Under normal cooling conditions at outdoor temp 35°CDB/24°CWB (95°FDB/75.2°FWB) outlet water temp 7°C (44.6°F) inlet water temp 12°C (53.6°F).
 ^{*2} Under normal heating conditions at outdoor temp 7°CDB/6°CWB (44.6°FDB/42.8°FWB) outlet water temp 45°C (113°F) inlet water temp 40°C (104°F).
 ^{*3} Pump input is not included.


⁴² Under normal heating conditions at outdoor temp 7°CDB/6°CWB (44.6°FDB/42.8°FWB) outer water temp 45°C (113°F) inlet water temp 40°C (104°F).
⁴³ Pump is not included in e-series.
⁴⁴ Under normal cooling or heating conditions capacity 90kW, water flow rate 15.5m3/h
⁴⁵ EN14511 standard (2013) formula is applied to figure out this value in case of fixed flow rate operation (flow rate is fixed at any heat load) Pump input is included in cooling capacity for EER calculation. Condition of water intel and outlet is fixed at intel 12°C and outlet 7°C.
⁴⁷ EN14511 standard (2013) formula is applied to figure out this value in case of variable flow rate operation (flow rate varies per heat load). Pump input is included in cooling capacity for EER calculation. Condition of water flow rate operation (flow rate varies per heat load). Pump input is included in cooling capacity for EER calculation. Condition of water flow rate operation (flow rate varies per heat load). Pump input is included in cooling capacity for EER calculation. Condition of water flow rate operation (flow rate varies per heat load). Pump input is included in cooling capacity for EER calculation. Condition of water flow rate operation (flow rate varies per heat load). Pump input is included in cooling capacity for EER calculation. Condition of water temperature: inlet water temperature varies due to fixed water flow rate and outlet is fixed at outlet 7°C.
⁴⁵ Calculations according to standard performances (in accordance with AHRI 550-590).
⁴⁷Please don't use the steel material for the water piping.
⁴⁷Please don ot use groundwater or well water in direct.
⁴⁷Please don ot use groundwater or well water in direct.
⁴⁷Due to continuous improvement, the above specifications may be subject to change without notice.

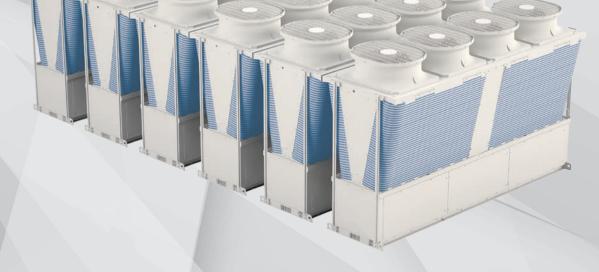



Technical specifications HEATING ONLY MODEL

	SET	EAHV-P900YAL-H EAHV-P900YAF-H	(-N)(-BS) (-N)(-BS)
		3-phase 4-wire 380-400-4	115V 50/60Hz
		Capacity priority	COP priority
	kW	90.00	63.00
	kcal/h	77,400	54,180
	BTU/h	307,080	214,956
Power input *2	kW	25.71	16.96
Current input 380-400-415V	A	43.4 - 41.2 - 39.7	28.6 - 27.2 - 26.2
		3.50	3.71
			3.61
	nput based on EN14511) *4		-
			-
			-
			10.8
			10.0
			65
Heating			
			131
Outdoor			
	m°/h	/./~25.8	
	dB (A)	65	63
	dB (A)	77	75
Inlet	mm (in)	50A (2B) housing ty	rpe joint
Outlet	mm (in)	50A (2B) housing ty	
Inlet		100A (4B) housing type joint	
		100A (4B) housing type joint	
	()	· · · · · · · · · · · · · · · · · · ·	// /
	mm	2450 x 2250 x 900	
Standard piping			
			1
			1
	IVIFd		anner brazing
			ORPORATION
Case heater	kW	0.045 x 2	
Lubricant		MEL32	
	m³/min	77 x 6	
Air flow rate	L/s	1283 x 6	
	cfm	2719 x 6	
Type, Quantity		Propeller fan >	(6
Starting method		Inverter	
Motor output	kW	0.19 x 6	
High pressure protection		High pres.Sensor & High pres.Swite	ch at 4.15MPa (601psi)
		Over-heat protection, Over c	
Inverter circuit		Over-heat protection	
	Current input 380-400-415V COP (Pump input is not included) COP (Reversible) Low/Medium (Includes pump in Seasonal space heating energy efficiency class for Seasonal space heating energy efficiency class for Water flow rate Heating Outdoor Inlet Outdoor Standard piping Inside header piping R410A Water Water side Air side Type Maker Starting method Quantity Motor output Case heater Lubricant Air flow rate Type, Quantity	kcal/hkcal/hPower input *2BTU/hPower input 380-400-415VACOP (Inculdes pump input is not included)COP (Inculdes pump input based on EN14511) *3SCOP (Reversible) Low/Medium (Includes pump input based on EN14511) *4Seasonal space heating energy efficiency class for medium-temperature applicationSeasonal space heating energy efficiency class for low-temperature applicationSeasonal space heating energy efficiency class for low-temperature applicationSeasonal space heating energy efficiency class for low-temperature applicationWater flow rateM ³ /hHeating*C%C%COutdoor*FOutdoor%CMater flow ratem ³ /hInletmm (in)Outletmm (in)Outletmm (in)Inletmm (in)Outletmm (in)Inletmm (in)OutletMPaMakerMPaStandard pipingkg (lbs)Inside header pipingkg (lbs)R410AMPaWater sideMPaAir sideMPaTypeMakerStarting methodkWCuuntitykWAir flow ratekWL/scfmType, QuantitykW	IW 90.00 kcal/h 77,400 BTU/h 307,080 Power input *2 BTU/h COP (Pump input is not included) A COP (Pump input is not included) 3.50 COP (Pump input based on EN14511) *1 3.25 Seasonal space heating energy efficiency class for medium-temperature application A+ Seasonal space heating energy efficiency class for medium-temperature application A+ KPa 135 135 Heating *6 ** 0.0146 water 30- 0.01door *7 Outdoor *7 ** ** 0.01door ** ** ** ** ** 0.01door ** ** ** 0.01doo </td

OPERATING LIMITS

Unit converter kcal/h = kW x 860 BTU/h = kW x 3,412 lbs = kg/0.4536 cfm = m³/min x 35.31



P1500/P1800

High energy-saving performance thanks to high-performance inverter compressor and proprietary Y-shaped construction.

BEST IN CLASS EFFICIENCY FOR ENERGY SAVING PERFORMANCE

The rated and seasonal energy efficiency ratios have been increased to achieve high energy saving performance.

Rated efficiency

The use of the high-efficiency inverter compressors achieves high energy saving performance. The 50 HP model has cooling EER and heating COP rating corresponding to energy saving class A.

Model **P1500 EER 3.19***1

*¹ Under normal cooling conditions at outdoor temp 35°DB/24°WB(95°FDB/75.2°FWB) outlet water temp 7°C(44.6°F) inlet water temp 12°C(53.6°F). Pump input is included in cooling capacity and power input based on EN14511.

*2 Under normal heating conditions at outdoor temp 7°DB/6°WB(44.6°FDB/42.8°FWB) outlet water temp 45°C(113°F) inlet water temp 40°C(104°F). Pump input is included in heating capacity and power input based on EN14511.

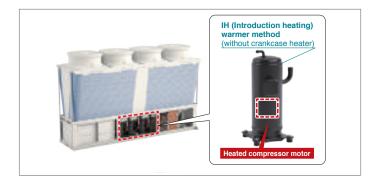
Seasonal efficiency

The use of the high-efficiency inverter compressors ensures optimum operation according to the operation load. The compressors can operate efficiently even during nighttime and intermediate seasons with low load, thereby saving energy throughout the year.

Model **P1500** SEER 4.62*1

Model P1800 SEER 4.58*1

*1 Compliant with EN14511



KEY COMPONENTS SAVE ENERGY

By controlling the frequency of the inverter compressors, the rated efficiency and the seasonal efficiency are higher. This achieves optimum energy saving according to the operation load.

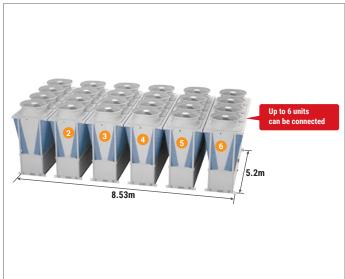
Equipped with high-efficiency inverter compressors

Each unit is equipped with four high-efficiency inverter compressors, developed by Mitsubishi Electric. The four compressors operate as two pairs. The inverters observe the load and control the compressors so that they can optimally operate in one unit. The compressors use the IH warmer method. Heat is generated by the magnetic material characteristics of the motor core unit to prevent liquid refrigerant from remaining in the compressor when the unit stops. This reduces standby power compared to the crankcase heater method when the unit is stopped.

Use of Y-shape structure for effective operation

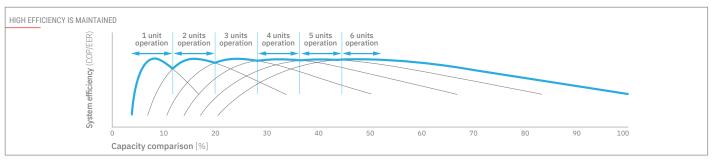
When the modules are connected, the intake air passages can be ensured on the floor and sides. This structure contributes to effective operation.

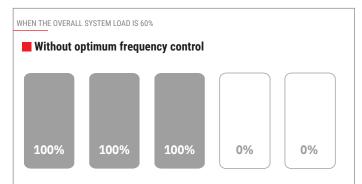
HIGH FUNCTIONALITY OF MODULAR CHILLER


The capacity among 1 group can be increased to up to 360 HP by combining units.

Large-capacity 50 HP and 60 HP units are available. Even a 360 HP system using six 60 HP units can be installed in a floor area of 8.53 m \times 5.2 m including the service space

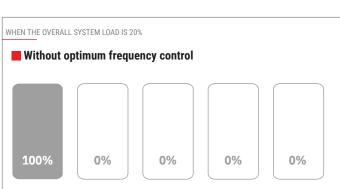
* Only modules with the same capacity can be combined.




Heat Pump	EAHV-P1500YBL(-N)	Heat Pump	EAHV-P1800YBL(-N)
Heating Only	EAHV-P1500YBL-H(-N)	Heating Only	EAHV-P1800YBL-H(-N)
Cooling Only	EACV-P1500YBL(-N)	Cooling Only	EACV-P1800YBL(-N)

OPTIMUM FREQUENCY CONTROL

When multiple modules are connected, the frequency of each inverter compressor is controlled during operation to increase the efficiency of each module, achieving a high energy saving performance. This control can be implemented by simply using our unique M-NET control, without the need for any other on-site design.

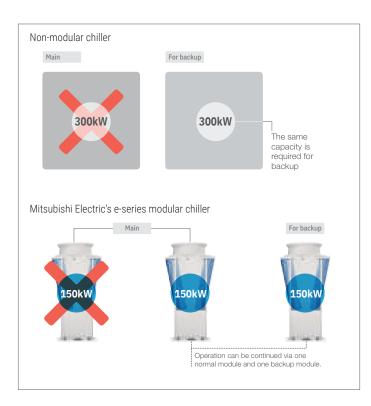


With non-inverter compressors, it is only possible to turn the unit on or off, and the compressor frequency cannot be adjusted according to the required capacity.

Our modules are equipped with inverter compressors, so the system can be operated in frequency ranges in which the efficiency of each module is at its peak. Optimum frequency control of each unit increases the efficiency of the whole system.

Since the compressors are running at inefficient frequencies, the efficiency of the whole system is lower.

With optimum frequency control



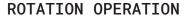
Peak efficiency is between 40 and 60%. In low load conditions, modules can be switched off to **keep remaining modules at optimum efficiency.**

The output of the pumps connected to the remaining group can be decreased, and the efficiency of the whole system is then increased. This control is achieved by connecting to M-NET. There is no need to prepare sensors, and the instrumentation is simple.

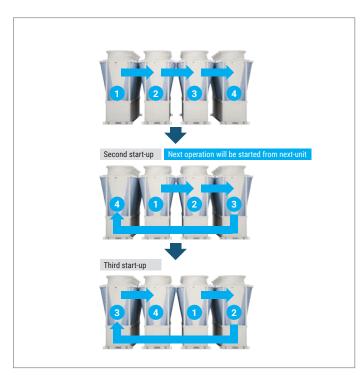
IMPROVED REDUNDANCY & RESILIENCE

When a non-modular chiller is used as the main 300kW unit, as in this example, the same capacity would also be required as a backup. However, when a Mitsubishi Electric e-series modular chiller is used, two modules can still operate even if one module goes down, continuing normal operation. This reduces the backup capacity requirement.

EMERGENCY OPERATION MODE


When a single module

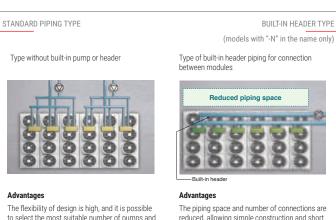
The e-series module contains four compressors (two for the 90kW module) developed by Mitsubishi Electric. The four compressors operate as two pairs. If something is wrong with one of the two pairs, the other pair can temporarily continue to operate. The 90kW module achieves this by operating its two compressors independently.



When multiple modules

If one of the e-series modules goes down, the remaining modules can continue to operate. Each module can independently control the outlet water temperature. Even if the main module goes down, operation can be continued.

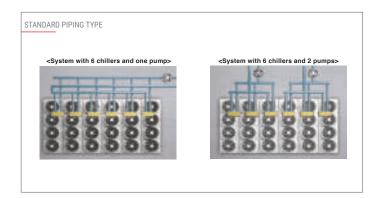
When multiple modules are installed, the operating time of each module in the same system can be equalized according to the load of the whole system.



PROCEDURE FOR INSTALLING THE CONNECTION KIT

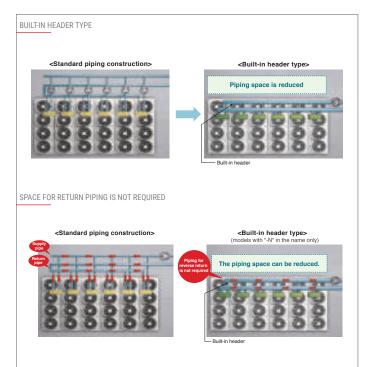
SELECTABLE PIPING SYSTEM

Standard piping and built-in header types are available. The optimum type can be selected according to the design and construction needs of the building.


The flexibility of design is high, and it is possible to select the most suitable number of pumps and water circuit for the on-site system.

The piping space and number of connections are reduced, allowing simple construction and short construction times. Advantages

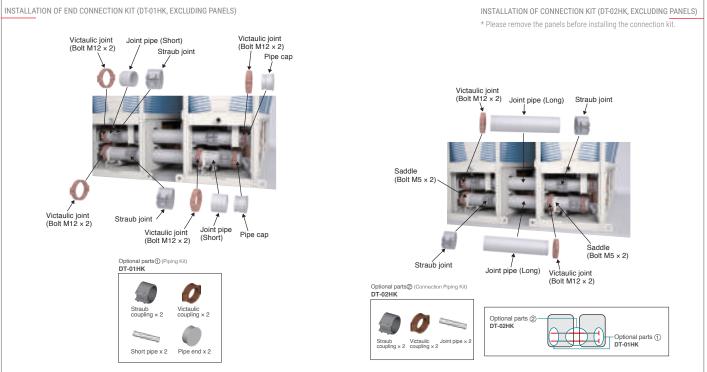
* It is not possible to build both the pump and the header in each unit.


STANDARD PIPING TYPE

The flexibility of design is high, and the system can be designed according to the on-site system and load pattern. Up to 24 units (4 groups × 6 units) can be connected to one system. The number of pumps and the piping structure can be designed according to the on-site.

BUILT-IN HEADER TYPE

The piping to connect to other units is built into each unit. The number of piping connections is reduced (saving construction work and reducing the construction time), and the installation space can be also reduced.

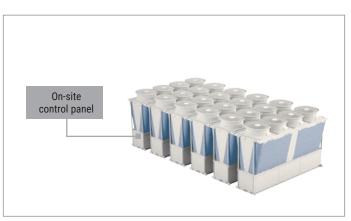

DETAILS OF BUILT-IN HEADER TYPE MODULES

Up to six units with built-in headers can be connected. (Piping size: 150A) When 6 units or a less are connected, flow adjustment and reverse return piping for each unit are unnecessary.

<complex-block>

INSTALLATION OF PANELS

CONTROL TECHNOLOGY


You can perform basic operations, such as starting, stopping, mode switching, water temperature setting and schedule setting, by connecting a remote controller.

EXTERNAL SIGNAL INPUT

Basic operations, such as starting, stopping, mode switching and water temperature setting, can be performed by inputting external signals directly to the unit.

* Optional products, such as remote controllers, are not always required.

	ON/OFF			
	Cooling/Heating/HeatingECO/Anti-freeze			
Operation/setting	Snow/regular			
	Demand			
	Scheduled operation (daily/weekly)			
	Operation mode			
Display	Current water temperature			
	Error code			
Control function (function of chiller body)	Control of number of units Control to prevent simultaneous defrosting			

	0N/0FF
	Cooling/Heating
Input	Snow/regular
	Demand
	Target water temperature
	Operation mode
Output	Under operation
Ουίραι	Under defrosting
	Error
Control function (function of chiller)	Control of number of units Control to prevent simultaneous defrosting

Technical specifications COOLING ONLY MODEL

MODEL	-		SET	$EACV_D1500VPL(N)(PC)$	EACV-P1800YBL(-N)(-BS)	
MODEL			SET	EACV-P1500YBL(-N)(-BS)	380-400-415V 50/60Hz	
Power source						
			kW	150.00	180.00	
			kcal/h	129,000	154,800	
			BTU/h	511,800	614,160	
Cooling capacity *1		Power input	kW	45.10	59.01	
		EER		3.33	3.05	
		IPLV *5		6.55	6.33	
		Water flow rate	m³/h	25.8	31.0	
		water now rate				
			kW	148.58	177.76	
			kcal/h	127,779	152,874	
			BTU/h	506,955	606,517	
		Power input	kW	46.52	61.25	
ooling capacit	y(EN14511) *2	EER		3.19	2.90	
cooling capacity(Entrice in)		Eurovent efficiency class		A	B	
		ESEER *		4.74		
					4.45	
		SEER		4.62	4.58	
		Water flow rate	m³/h	25.8	31.0	
urront innut		Cooling current 380-400-415V *1	A	77 -	73 - 70	
Current input		Maximum current	A	1	11	
later pressure	drop *1		kPa	114	164	
pressure			°C		er 5~30 *7	
		Cooling	°F		er 41~86 *7	
emp range						
remp range		Outdoor	°C		43 *6	
			°F	5~10	9.4 *6	
Circulating wate	er volume range		m³/h	12.9	~34.0	
Sound pressure	level (measured in					
anechoic room) at 1m *1			dB (A)	66	68	
,	vel (measured in		dB (A)	84	86	
		Inlat	mana (in)	(EA (0.1/0D) b	evelop type igint	
Diameter of wat		Inlet	mm (in)		ousing type joint	
Standard piping	g)	Outlet	mm (in)		ousing type joint	
Diameter of wat	ter pipe	Inlet	mm (in)	150A (6B) ho	using type joint	
Inside header p	piping)	Outlet	mm (in)	150A (6B) ho	using type joint	
External finish				Polyester powder	coating steel plate	
xternal dimens	sion HxWxD		mm		400 x 1080	
		Standard piping	kg (lbs)			
Vet weight				1240 (2734)		
		Inside header piping	kg (lbs)	1256 (2769)		
)esign pressure	`	R410A	MPa	4.15		
resign pressure	-	Water	MPa	1	.0	
		Water side		Stainless steel plat	e and copper brazing	
leat exchanger		Air side		Plate fin an	d copper tube	
		Туре			rmetic compressor	
		Maker			TRIC CORPORATION	
ompressor		Starting method			erter	
ompressor		Quantity			4	
		Motor output	kW	11.	7 x 4	
		Lubricant			EL32	
			m³/min		5 x 4	
		Air flow roto				
		Air flow rate	L/s		7 x 4	
an			cfm		57 x 4	
		Type, Quantity		Propelle	er fan x 4	
		Starting method		Inv	erter	
		Motor output	kW		4 x 4	
		High pressure protection			s.Switch at 4.15MPa (601psi)	
Protection				•••••••		
		Inverter circuit		· · · · · · · · · · · · · · · · · · ·	Over current protection	
		Compressor			protection	
	Type / GWP *4				A / 2088	
	Feetens ebound	Weight	kg	1	2.0	
	Factory charged	CO2 equivalent *4	t		5.06	
	Maximum additional	Weight	kg		8.0	
efrigerant *3	Maximum additional					
-	charge	CO2 equivalent *4	t		0.23	
	Total charge	Weight	kg		0.0	
	iotal charge	CO2 equivalent *4	t	12	5.29	

*1 Under normal cooling conditions at outdoor temp 35°CDB/24°CWB(95°FDB/75.2°FWB) outlet water temp 7°C(44.6°F) inlet water temp *1 Under normal cooling conditions at outdoor temp 35°CDB/24°CWB(95°FDB/75.2°FWB) outlet water temp 7°C(44.6°F) inlet water temp 12°C(53.6°F). Pump input is not included in cooling capacity and power input.
*2 Under normal cooling conditions at outdoor temp 35°CDB/24°CWB(95°FDB/75.2°FWB) outlet water temp 7°C(44.6°F) inlet water temp 12°C(53.6°F). Pump input is included in cooling capacity and power input based on EN14511.
*3 Amount of factory-charged refrigerant is 3(kg) x 4. Please add the refrigerant at the field.
*4 These values are based on Regulation(EU) No.517 / 2014.
*6 [PLV is calculated in accordance with AHRI 550-590.
*6 ESEER is calculated in accordance with EUROVENT conditions.
*Please don't use the steel material for the water piping.
*Please don't use the steel material for the vater piping.
*Please donys make water circulate, or pull the circulation water out completely when not in use.
*Please don to use groundwater or well water in direct.
*The water circuit must be closed circuit.
*Due to continuous improvement, the above specifications may be subject to change without notice.
*This model doesn't equip with a pump.

*This model doesn't equip with a pump.

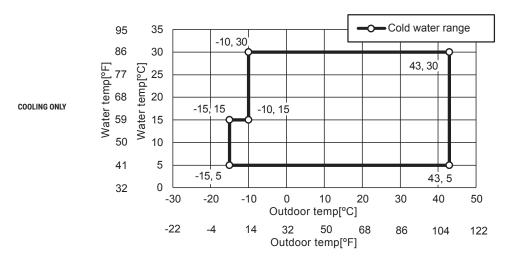
recimi	ical specificatio	NS HEATPUMP MODEL			
MODEL			SET	EAHV-P1500YBL(-N)(-BS)	EAHV-P1800YBL(-N)(-B
Power source				3-phase 4-wire 380)-400-415V 50/60Hz
ower source			kW	150.00	180.00
			kcal/h	129,000	154,800
			BTU/h	511,800	614,160
Cooling capacit	tv *1	Power input	kW	45.10	59.01
5.1	,	EER		3.33	3.05
		IPLV *7		6.55	6.33
		Water flow rate	m³/h	25.8	31.0
			kW	148.58	177.76
			kcal/h	127,779	152,874
			BTU/h	506,955	606,517
		Power input	kW	46.52	61.25
ooling capacit	ty(EN14511) *2	EER		3.19	2.90
		Eurovent efficiency class		A	В
		ESEER *8		4.74	4.45
		SEER	0.1	4.62	4.58
		Water flow rate	m³/h	25.8	31.0
			kW	150.00	180.00
			kcal/h	129,000	154,800
leating capacit	ty *3	Power input	BTU/h kW	511,800 44.59	<u>614,160</u> 55.68
		Power input COP	K.VV	3.36	3.23
		Water flow rate	m³/h	25.8	3.23
		mater now rate	kW	25.8	182.24
			kvv kcal/h	131.42	182.24
			BTU/h	516,645	621,803
		Power input	kW	46.01	57.92
eating capacit	ty(EN14511) *4	COP		3.29	3.15
		Eurovent efficiency class		A	B
		SCOP (Reversible) Low/Medium			/ 2.85
		Water flow rate	m³/h	25.8	31.0
		Cooling current 380-400-415V *1	A		73 - 70
urrent input		Heating current 380-400-415V *3	A		72 - 69
		Maximum current	A		11
ater pressure	drop *1		kPa	114	164
		Caaling	°C	Outlet wa	ter 5~30 *9
		Cooling	°F	Outlet wat	er 41~86 *9
		Heating	°C	Outlet wat	er 30~55 *9
emp range		Heating	°F		er 86~131 *9
		Outdoor	°C		·43 * ⁹
			°F		19.4 * ⁹
	er volume range		m³/h		~34.0
	e level (measured in anechoic room) at 1m *1		dB (A)	66	68
	vel (measured in anechoic room) *1		dB (A)	64	86
iameter of wa		Inlet	mm (in)		ousing type joint
standard pipin		Outlet	mm (in)	65A (2 1/2B) h	ousing type joint
ameter of wa		Inlet	mm (in)		using type joint using type joint
nside header p kternal finish	piping)	Outlet	mm (in)		coating steel plate
			mm		400 x 1080
ternal dimens		Standard piping	mm kg (lbs)		(2888)
et weight		Inside header piping	kg (lbs) kg (lbs)		(2923)
		R410A	MPa		.15
esign pressure	e	Water	MPa		1.0
		Water side	, with		e and copper brazing
eat exchanger	r	Air side			d copper tube
		Туре			rmetic compressor
		Maker		MITSUBISHI ELEC	TRIC CORPORATION
		Starting method			erter
ompressor		Quantity			4
		Motor output	kW		7 x 4
		Lubricant			EL32
			m³/min		5 x 4
		Air flow rate	L/s		7 x 4
an		Time Quantit	cfm		57 x 4
		Type, Quantity		Propeller fan x 4	
		Starting method			erter
		Motor output	kW		2 x 4 s.Switch at 4.15MPa (601psi)
Protection		High pressure protection			Over current protection
rotection		Inverter circuit Compressor			protection
	Type / GWP *6	00111/182201			A / 2088
		Weight	kg		2.0
	Factory charged	CO2 equivalent *6	ку t		5.06
		Weight	ر kg		8.0
efrigerant *5	Maximum additional charge	CO2 equivalent *6	ky t		0.23
		Weight	kg		0.0
	Total charge	CO2 equivalent *6	t		5.29
		Control			EV

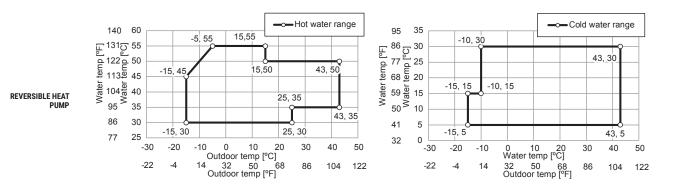
*1 Under normal cooling conditions at outdoor temp 35°DB/24°WB(95°FDB/75.2°FWB) outlet water temp 7°C(44.6°F) inlet water temp 12°C(53.6°F). Pump input is not included in cooling capacity and power input.
*2 Under normal cooling conditions at outdoor temp 35°DB/24°WB(95°FDB/75.2°FWB) outlet water temp 7°C(44.6°F) inlet water temp 12°C(53.6°F). Pump input is included in cooling capacity and power input.
*3 Under normal heating conditions at outdoor temp 7°DB/6°WB(44.6°FDB/42.8°FWB) outlet water temp 45°C(113°F) inlet water temp 40°C(104°F). Pump input is included in heating capacity and power input.
*4 Under normal heating conditions at outdoor temp 7°DB/6°WB(44.6°FDB/42.8°FWB) outlet water temp 45°C(113°F) inlet water temp 40°C(104°F). Pump input is not included in heating capacity and power input.
*4 Under normal heating conditions at outdoor temp 7°DB/6°WB(44.6°FDB/42.8°FWB) outlet water temp 45°C(113°F) inlet water temp 40°C(104°F). Pump input is included in heating capacity and power input.
*4 Under normal heating conditions at outdoor temp 7°DB/6°WB(44.6°FDB/42.8°FWB) outlet water temp 45°C(113°F) inlet water temp 40°C(104°F). Pump input is included in heating capacity and power input based on EN14511.
*5 Amount of factory-charged refrigerant is 3(kg) × 4. Please add the refrigerant at the field.
*7 These values are based on Regulation(EU) No.517 / 2014.
*7 IPLV is calculated in accordance with EUROVENT conditions.
**EDese don't use the scleed material for the water input.

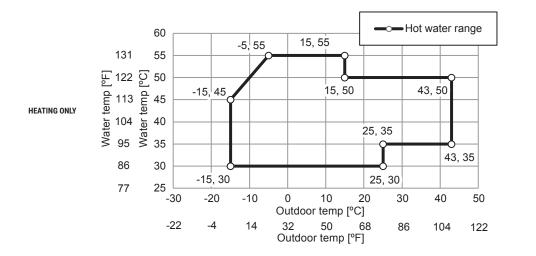
*Please don't use the steel material for the water piping. *Please don't use the steel material for the water piping. *Please always make water circulate, or pull the circulation water out completely when not in use. *Please do not use groundwater or well water in direct. *The water circuit must be closed circuit.

*Due to continuous improvement, the above specifications may be subject to change without notice. *This model doesn't equip with a pump.

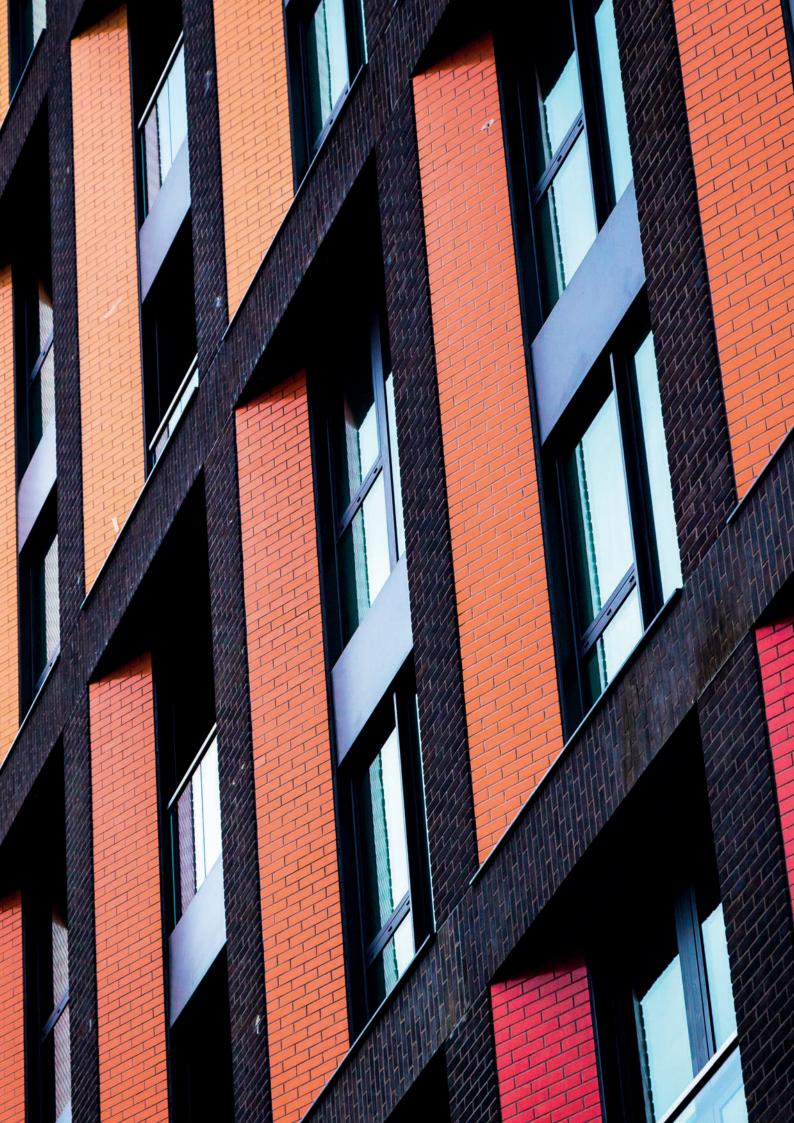
Technical specifications HEATYNG ONLY MODEL


MODEL			SET	EAHV-P1500YBL-H(-N) (-BS)	EAHV-P1800YBL-H(-N (-BS)
Power source				3-phase 4-wire 380	-400-415V 50/60Hz
			kW	150.00	180.00
			kcal/h	129,000	154,800
			BTU/h	511,800	614,160
eating capacity	*1	Power input	kW	44.59	55.68
		COP		3.36	3.23
		Water flow rate	m³/h	25.8	31.0
			kW	151.42	182.24
			kcal/h	130,221	156,726
			BTU/h	516,645	621,803
		Power input	kW	46.01	57.92
leating capacity	(EN14511) *2	COP	NVV	3.29	3.15
		Eurovent efficiency class		A.	В
					/ 2.83
		SCOP (Heating only) Low/Medium			
		Water flow rate	m³/h	25.8	31.0
		Heating current 380-400-415V *3	A		2 - 69
		Maximum current	A		11
ater pressure d	rop *1		kPa	114	164
		Cooling	°C		r 30~55 *5
Temp range			°F		r 86~131 *5
		Outdoor	°C	-15~	43 *4
		Outdoor	°F	5~10	9.4 *4
irculating water	volume range		m³/h	12.9	~34.0
ound pressure l	evel (measured in anechoic room) at 1m *1		dB (A)	66	67
	el (measured in anechoic room) *1		dB (A)	84	86
iameter of wate	, ,	Inlet	mm (in)	65A (2 1/2B) housing type joint	
(Standard piping)		Outlet	mm (in)		busing type joint
Diameter of wate		Inlet	mm (in)		ising type joint
Inside header pi		Outlet	mm (in)	× 7	ising type joint
External finish	F	outer			coating steel plate
External dimension	on HyWyD		mm		00 x 1080
Atema umensi		Standard piping	kg (lbs)		
let weight		Inside header piping	kg (lbs)	1310 (2888)	
		R410A	MPa	1326 (2923)	
Design pressure		Water		4.15	
			MPa	1.0 Stainless steel plate and copper brazing	
leat exchanger		Water side			
		Air side			copper tube
		Туре		Inverter scroll hermetic compressor MITSUBISHI ELECTRIC CORPORATION	
		Maker			
Compressor		Starting method		Inve	
		Quantity			4
		Motor output	kW		7 x 4
		Lubricant			L32
			m³/min	265	5 x 4
		Air flow rate	L/s	441	7 x 4
			cfm	935	7 x 4
an		Type, Quantity		Propeller fan x 4	
		Starting method		Inverter	
		Motor output	kW		4 x 4
		High pressure protection			s.Switch at 4.15MPa (601psi)
rotection		Inverter circuit			Over current protection
0.0001011		Compressor			protection
	Type / GWP *4	Compressor			/ 2088
_	Type / GWP	Woight	- ka		
	Factory charged	Weight	kg		2.0
		CO2 equivalent *4	t		.06
Defrigerent #3	Maximum additional charge	Weight	kg		3.0
efrigerant *3		CO2 equivalent *4	t	100	0.23
efrigerant *3					
-	Total charge	Weight CO2 equivalent *4	kg	60).0 5.29


Control
Con


*This model doesn't equip with a pump.

OPERATING LIMITS



Unit converter $kcal/h = kW \times 860$ $BTU/h = kW \times 3,412$ lbs = kg/0.4536 $cfm = m^3/min \times 35.31$

30 MITSUBISHI

Centro Direzionale Colleoni Viale Colleoni, 7 - Palazzo Sirio 20864 Agrate Brianza (MB) tel. 039.60531 - fax 039.6053223 e-mail: clima@it.mee.com

les.mitsubishielectric.it/en/products/

for a greener tomorrow

Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses we are helping contribute to the realization of a sustainable society.

The equipment described in this catalogue contain fluorinated gasses such as HFC-410A (GWP 2088), HFC-134A (GWP 1430) e HFC-407C (GWP 1774). Installation of those equipment must be executed by professional installer based on EU reg. 303/2008 and 517/2014

Щų

Brochure e-Series E-2003242 (16430)

Specifications are subject to change without notice

